Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

1-(3,5-Dinitrobenzoyl)-3,3-dipropylthiourea

Sohail Saeed,^a‡ Naghmana Rashid,^a Muhammad Sher,^a Seik Weng Ng^b and Edward R. T. Tiekink^b*

^aDepartment of Chemistry, Research Complex, Allama Iqbal Open University, Islamabad 44000, Pakistan, and ^bDepartment of Chemistry, University of Malaya, 50603 Kuala Lumpur, Malaysia Correspondence e-mail: edward.tiekink@gmail.com

Received 11 April 2011; accepted 11 April 2011

Key indicators: single-crystal X-ray study; T = 295 K; mean σ (C–C) = 0.004 Å; R factor = 0.055; wR factor = 0.154; data-to-parameter ratio = 16.4.

The title thiourea derivative, $C_{14}H_{18}N_4O_5S$, features two substantial twists between its component fragments: the dihedral angle between the SN_2C (thiourea) and ONC_2 (amide) residues is 48.89 (7)° and that between the benzene ring and the amide residue is 30.27 (7)°. In the crystal, molecules are linked by bifurcated $N-H\cdots(O,S)$ hydrogen bonds, generating [001] supramolecular chains.

Related literature

For the biological activity of thiourea derivatives, see: Venkatachalam *et al.*, (2004); Saeed *et al.* (2011). For related thiourea structures, see: Gunasekaran *et al.* (2010); Saeed *et al.* (2010); Dzulkifli *et al.* (2011).

Mo $K\alpha$ radiation

 $\mu = 0.23 \text{ mm}^{-1}$ T = 295 K

Data collection

gilent SuperNova Dual	8055 measured reflections
diffractometer with an Atlas	3614 independent reflections
detector	2878 reflections with $I > 2\sigma(I)$
bsorption correction: multi-scan	$R_{\rm int} = 0.027$
(CrysAlis PRO; Agilent, 2010)	
$T_{\min} = 0.933, T_{\max} = 0.977$	

Refinement

Δ

 $R[F^2 > 2\sigma(F^2)] = 0.055$ $wR(F^2) = 0.154$ S = 1.02 3614 reflections 221 parameters 1 restraint H atoms treated by a mixture of independent and constrained refinement $\Delta \rho_{\text{max}} = 1.04 \text{ e} \text{ Å}^{-3}$ $\Delta \rho_{\text{min}} = -0.46 \text{ e} \text{ Å}^{-3}$

 $0.30 \times 0.20 \times 0.10 \text{ mm}$

Table 1

Hydrogen-bond geometry (Å, °).

$D - H \cdots A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - \mathbf{H} \cdot \cdot \cdot A$
$\begin{array}{l} N2 - H2 \cdots O1^{i} \\ N2 - H2 \cdots S1^{i} \end{array}$	0.87 (1) 0.87 (1)	2.53 (2) 2.69 (2)	3.264 (3) 3.436 (2)	142 (2) 144 (2)
	. 1 . 1			

Symmetry code: (i) $x, -y + \frac{1}{2}, z + \frac{1}{2}$.

Data collection: *CrysAlis PRO* (Agilent, 2010); cell refinement: *CrysAlis PRO*; data reduction: *CrysAlis PRO*; program(s) used to solve structure: *SHELXS97* (Sheldrick, 2008); program(s) used to refine structure: *SHELXL97* (Sheldrick, 2008); molecular graphics: *ORTEP-3* (Farrugia, 1997) and *DIAMOND* (Brandenburg, 2006); software used to prepare material for publication: *publCIF* (Westrip, 2010).

The authors are grateful to Allama Iqbal Open University, Islamabad, Pakistan, for the allocation of research and analytical laboratory facilities. The authors also thank the University of Malaya for supporting this study.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: HB5845).

References

- Agilent (2010). CrysAlis PRO. Agilent Technologies, Yarnton, Oxfordshire, England.
- Brandenburg, K. (2006). *DIAMOND*. Crystal Impact GbR, Bonn, Germany. Dzulkifli, N. N., Farina, Y., Yamin, B. M., Baba, I. & Tiekink, E. R. T. (2011). *Acta Cryst.* E67, 0872.
- Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.
- Gunasekaran, N., Karvembu, R., Ng, S. W. & Tiekink, E. R. T. (2010). Acta Cryst. E66, 02601.
- Saced, S., Rashid, N., Jones, P. G. & Tahir, A. (2011). J. Heterocycl. Chem. 48, 74–84.
- Saeed, S., Rashid, N. & Wong, W.-T. (2010). Acta Cryst. E66, 0980.
- Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
- Venkatachalam, T. K., Mao, C. & Uckun, F. M. (2004). Bioorg. Med. Chem. 12, 4275–4284.
- Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.

‡ Additional correspondence author, e-mail: sohail262001@yahoo.com.

b = 21.2839 (10) Å

supplementary materials

Acta Cryst. (2011). E67, o1162 [doi:10.1107/S1600536811013638]

1-(3,5-Dinitrobenzoyl)-3,3-dipropylthiourea

S. Saeed, N. Rashid, M. Sher, S. W. Ng and E. R. T. Tiekink

Comment

The biological potential of thiourea derivatives (Venkatachalam *et al.*, 2004; Saeed *et al.*, 2011) motivates structural studies of these compounds (Gunasekaran *et al.* 2010; Saeed *et al.* 2010; Dzulkifli *et al.*, 2011). Herein, the crystal and molecular structure of the title thiourea derivative, (I), is described.

The molecular structure of (I), Fig. 1, shows a significant twist around the central atoms as seen in the value of the dihedral angle formed between the least-squares planes through the S1,N1,N2,C7 (thiourea) and O1,N2,C8,C9 (amide) atoms of 48.89 (7) °. Further, the benzene ring is twisted out of the plane of the carbonyl residue as indicated by the O1—C8—C9—C10 torsion angle of 147.1 (2) °. With respect to the S1,N1,N2,C7 plane, the n-propyl groups lie to either side. Whereas the O2-nitro group is co-planar with the benzene ring to which it is bonded, the O2—N3—C11—C10 torsion angle = -4.2 (3) °, the O4-nitro group is slightly twisted out of the plane as seen in the value of the O4—N4—C13—C12 torsion angle of -9.3 (3) °.

The crystal packing is dominated by N—H···O,S hydrogen bonds as the N1—H H atoms is bifurcated, Table 1. These result in the formation of six-membered {···H···OCNCS} synthons and linear supramolecular chains along the c direction, Fig. 2.

Experimental

A solution of 3,5-dinitrobenzoyl chloride (0.01 mol) in anhydrous acetone (75 ml) and 3% tetrabutylammonium bromide (TBAB) as a phase-transfer catalyst (PTC) in anhydrous acetone was added drop-wise to a suspension of dry potassium thiocyanate (0.01 mol) in acetone (50 ml) and the reaction mixture was refluxed for 50 min. After cooling to room temperature, a solution of dipropyl amine (0.01 mol) in anhydrous acetone (25 ml) was added drop-wise and the resulting mixture refluxed for 3 h. Hydrochloric acid (0.1 N, 300 ml) was added and the solution was filtered. The solid product was washed with water and purified by re-crystallization from ethyl acetate to yield light-yellow prisms of (I). Yield: 1.29 g (82%); *M*.pt. 407–408 K. IR (KBr, cm⁻¹): 3173 v(NH), 1690 v(C=O), 1536 v(benzene ring), 1180 v(C=S). Anal. Calcd. for $C_{14}H_{18}N_4O_5S$: C, 47.45; H, 5.12; N, 15.81; S, 9.05%. Found: C, 47.53; H, 5.17; N, 15.75; S, 9.03%.

Refinement

Carbon-bound H-atoms were placed in calculated positions [C—H 0.93–0.97 Å, $U_{iso}(H)$ 1.2–1.5 $U_{eq}(C)$] and were included in the refinement in the riding model approximation. The amino H-atoms were located in a difference Fourier map, and were refined with a distance restraint of N—H 0.88±0.01 Å; the U_{iso} values were refined. The maximum and minimum residual electron density peaks of 1.04 and 0.46 e Å⁻³, respectively, were located 1.05 Å and 0.33 Å from the C2 and H2a atoms, respectively. Figures

Fig. 1. The molecular structure of (I) showing displacement ellipsoids at the 35% probability level.

Fig. 2. Supramolecular chain aligned along the c axis in (I) mediated by N—H···O, S hydrogen bonding shown as blue and orange dashed lines, respectively.

1-(3,5-Dinitrobenzoyl)-3,3-dipropylthiourea

Crystal data	
$C_{14}H_{18}N_4O_5S$	F(000) = 744
$M_r = 354.38$	$D_{\rm x} = 1.456 {\rm ~Mg~m}^{-3}$
Monoclinic, $P2_1/c$	Mo K α radiation, $\lambda = 0.71073$ Å
Hall symbol: -P 2ybc	Cell parameters from 3443 reflections
a = 7.9406 (4) Å	$\theta = 2.3 - 29.3^{\circ}$
<i>b</i> = 21.2839 (10) Å	$\mu = 0.23 \text{ mm}^{-1}$
c = 9.5967 (4) Å	T = 295 K
$\beta = 94.379 \ (4)^{\circ}$	Prism, light yellow
$V = 1617.17 (13) \text{ Å}^3$	$0.30\times0.20\times0.10\ mm$
Z = 4	

Data collection

Agilent SuperNova Dual diffractometer with an Atlas detector	3614 independent reflections
Radiation source: SuperNova (Mo) X-ray Source	2878 reflections with $I > 2\sigma(I)$
Mirror	$R_{\rm int} = 0.027$
Detector resolution: 10.4041 pixels mm ⁻¹	$\theta_{\text{max}} = 27.5^{\circ}, \ \theta_{\text{min}} = 2.3^{\circ}$
ω scans	$h = -10 \rightarrow 10$
Absorption correction: multi-scan (CrysAlis PRO; Agilent, 2010)	$k = -27 \rightarrow 26$
$T_{\min} = 0.933, T_{\max} = 0.977$	$l = -12 \rightarrow 10$
8055 measured reflections	

Refinement

Refinement on F^2	Primary atom site location: structure-invariant direct methods
Least-squares matrix: full	Secondary atom site location: difference Fourier map
$R[F^2 > 2\sigma(F^2)] = 0.055$	Hydrogen site location: inferred from neighbouring sites

$wR(F^2) = 0.154$	H atoms treated by a mixture of independent and constrained refinement
<i>S</i> = 1.02	$w = 1/[\sigma^2(F_o^2) + (0.0697P)^2 + 1.1729P]$ where $P = (F_o^2 + 2F_c^2)/3$
3614 reflections	$(\Delta/\sigma)_{\text{max}} = 0.001$
221 parameters	$\Delta \rho_{max} = 1.04 \text{ e } \text{\AA}^{-3}$
1 restraint	$\Delta \rho_{min} = -0.46 \text{ e } \text{\AA}^{-3}$

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (A^2)

	x	У	Ζ	$U_{\rm iso}$ */ $U_{\rm eq}$
S1	0.37257 (8)	0.21276 (3)	0.24866 (6)	0.0405 (2)
01	0.7561 (2)	0.24758 (9)	0.29218 (19)	0.0505 (5)
O2	0.5844 (3)	0.44242 (11)	0.7375 (2)	0.0621 (6)
O3	0.8149 (3)	0.49393 (11)	0.7748 (3)	0.0761 (7)
O4	1.2906 (3)	0.44304 (11)	0.5156 (3)	0.0711 (7)
O5	1.3052 (3)	0.35161 (11)	0.4221 (2)	0.0623 (6)
N1	0.4129 (2)	0.15013 (9)	0.4887 (2)	0.0334 (4)
N2	0.5882 (3)	0.23606 (9)	0.4730 (2)	0.0343 (4)
H2	0.581 (3)	0.2455 (12)	0.5607 (13)	0.044 (7)*
N3	0.7311 (3)	0.45149 (10)	0.7190 (2)	0.0451 (5)
N4	1.2306 (3)	0.39224 (11)	0.4807 (2)	0.0440 (5)
C1	0.2706 (3)	0.10939 (12)	0.4387 (3)	0.0433 (6)
H1A	0.2787	0.0701	0.4899	0.052*
H1B	0.2802	0.0999	0.3408	0.052*
C2	0.0973 (4)	0.1384 (2)	0.4550 (4)	0.0746 (10)
H2A	0.0819	0.1733	0.3903	0.089*
H2B	0.0117	0.1073	0.4280	0.089*
C3	0.0687 (5)	0.1608 (2)	0.5930 (5)	0.0882 (13)
НЗА	-0.0414	0.1795	0.5919	0.132*
H3B	0.1528	0.1915	0.6217	0.132*
НЗС	0.0757	0.1262	0.6574	0.132*
C4	0.5096 (3)	0.12842 (12)	0.6168 (2)	0.0396 (6)
H4A	0.4329	0.1098	0.6791	0.047*
H4B	0.5640	0.1641	0.6642	0.047*
C5	0.6417 (4)	0.08077 (13)	0.5847 (3)	0.0510(7)
H5A	0.7223	0.1002	0.5270	0.061*
H5B	0.5880	0.0464	0.5318	0.061*
C6	0.7351 (4)	0.05486 (15)	0.7163 (4)	0.0659 (9)
H6A	0.8211	0.0262	0.6912	0.099*
H6B	0.6569	0.0332	0.7708	0.099*
H6C	0.7862	0.0888	0.7701	0.099*
C7	0.4603 (3)	0.19711 (10)	0.4084 (2)	0.0313 (5)
C8	0.7150 (3)	0.26338 (11)	0.4063 (2)	0.0339 (5)
C9	0.8066 (3)	0.31654 (10)	0.4830 (2)	0.0320 (5)
C10	0.7262 (3)	0.35735 (11)	0.5703 (2)	0.0337 (5)
H10	0.6152	0.3502	0.5908	0.040*
C11	0.8147 (3)	0.40847 (11)	0.6256 (2)	0.0350 (5)

supplementary materials

C12	0.9793 (3)	0.42129 (11)	0.5982 (2)	0.0367 (5)
H12	1.0361	0.4564	0.6352	0.044*
C13	1.0552 (3)	0.37937 (11)	0.5132 (2)	0.0353 (5)
C14	0.9729 (3)	0.32754 (11)	0.4549 (2)	0.0338 (5)
H14	1.0280	0.3004	0.3976	0.041*

Atomic displacement parameters $(Å^2)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
S1	0.0449 (4)	0.0445 (4)	0.0315 (3)	-0.0042 (3)	-0.0021 (2)	0.0030 (2)
01	0.0508 (11)	0.0646 (12)	0.0378 (10)	-0.0172 (9)	0.0146 (8)	-0.0188 (9)
O2	0.0525 (12)	0.0665 (14)	0.0695 (14)	0.0005 (10)	0.0182 (10)	-0.0207 (11)
O3	0.0734 (15)	0.0652 (14)	0.0909 (17)	-0.0130 (12)	0.0146 (13)	-0.0475 (13)
O4	0.0519 (12)	0.0681 (15)	0.0941 (18)	-0.0262 (11)	0.0118 (12)	-0.0156 (13)
O5	0.0438 (11)	0.0814 (15)	0.0636 (13)	-0.0046 (10)	0.0156 (10)	-0.0176 (12)
N1	0.0346 (10)	0.0325 (10)	0.0331 (10)	-0.0015 (8)	0.0025 (8)	-0.0001 (8)
N2	0.0410 (11)	0.0364 (10)	0.0259 (9)	-0.0079 (8)	0.0048 (8)	-0.0052 (8)
N3	0.0514 (14)	0.0432 (12)	0.0409 (12)	0.0023 (10)	0.0037 (10)	-0.0077 (10)
N4	0.0355 (11)	0.0570 (14)	0.0393 (11)	-0.0067 (10)	0.0005 (9)	0.0007 (10)
C1	0.0423 (14)	0.0389 (13)	0.0486 (14)	-0.0094 (11)	0.0036 (11)	-0.0017 (11)
C2	0.0510 (18)	0.097 (3)	0.076 (2)	-0.0187 (18)	0.0090 (16)	-0.015 (2)
C3	0.059 (2)	0.102 (3)	0.107 (3)	-0.015 (2)	0.022 (2)	-0.040 (3)
C4	0.0476 (14)	0.0394 (13)	0.0317 (12)	-0.0022 (11)	0.0031 (10)	0.0047 (10)
C5	0.0528 (16)	0.0482 (15)	0.0500 (16)	0.0068 (13)	-0.0093 (13)	-0.0058 (12)
C6	0.072 (2)	0.0484 (17)	0.072 (2)	0.0038 (15)	-0.0257 (17)	0.0032 (15)
C7	0.0323 (11)	0.0305 (11)	0.0315 (11)	0.0008 (9)	0.0055 (9)	-0.0042 (9)
C8	0.0363 (12)	0.0348 (12)	0.0308 (11)	-0.0036 (9)	0.0035 (9)	-0.0035 (9)
C9	0.0362 (12)	0.0337 (11)	0.0259 (10)	-0.0029 (9)	0.0015 (9)	0.0012 (9)
C10	0.0353 (12)	0.0372 (12)	0.0285 (11)	-0.0025 (10)	0.0019 (9)	0.0023 (9)
C11	0.0398 (13)	0.0344 (12)	0.0304 (11)	0.0023 (10)	0.0006 (9)	-0.0022 (9)
C12	0.0424 (13)	0.0351 (12)	0.0318 (11)	-0.0063 (10)	-0.0024 (10)	-0.0029 (9)
C13	0.0341 (12)	0.0416 (13)	0.0299 (11)	-0.0042 (10)	0.0002 (9)	0.0037 (9)
C14	0.0364 (12)	0.0363 (12)	0.0290 (11)	0.0003 (10)	0.0040 (9)	-0.0005 (9)

Geometric parameters (Å, °)

S1—C7	1.668 (2)	С3—НЗВ	0.9600
O1—C8	1.214 (3)	С3—НЗС	0.9600
O2—N3	1.207 (3)	C4—C5	1.508 (4)
O3—N3	1.221 (3)	C4—H4A	0.9700
O4—N4	1.218 (3)	C4—H4B	0.9700
O5—N4	1.211 (3)	C5—C6	1.519 (4)
N1—C7	1.334 (3)	C5—H5A	0.9700
N1—C4	1.473 (3)	С5—Н5В	0.9700
N1—C1	1.475 (3)	С6—Н6А	0.9600
N2—C8	1.364 (3)	С6—Н6В	0.9600
N2—C7	1.417 (3)	С6—Н6С	0.9600
N2—H2	0.871 (10)	C8—C9	1.507 (3)
N3—C11	1.474 (3)	C9—C14	1.388 (3)

N4—C13	1.476 (3)	C9—C10	1.394 (3)
C1—C2	1.527 (4)	C10-C11	1.379 (3)
C1—H1A	0.9700	C10—H10	0.9300
C1—H1B	0.9700	C11—C12	1.380 (3)
C2—C3	1.441 (5)	C12—C13	1.378 (3)
С2—Н2А	0.9700	C12—H12	0.9300
С2—Н2В	0.9700	C13—C14	1.379 (3)
С3—НЗА	0.9600	C14—H14	0.9300
C7—N1—C4	124.44 (19)	C4—C5—C6	112.2 (2)
C7—N1—C1	119.7 (2)	C4—C5—H5A	109.2
C4—N1—C1	115.12 (19)	С6—С5—Н5А	109.2
C8—N2—C7	125.03 (19)	С4—С5—Н5В	109.2
C8—N2—H2	117 3 (18)	С6—С5—Н5В	109.2
C7—N2—H2	117.5 (18)	H5A—C5—H5B	107.9
0^{2} N3 0^{3}	123.6 (2)	C5—C6—H6A	109.5
02 - N3 - C11	118 3 (2)	C5—C6—H6B	109.5
03 - N3 - C11	118.1 (2)	нба—С6—Н6В	109.5
05-N4-04	1245(2)	C5_C6_H6C	109.5
05 N4 04	127.9(2)		109.5
04 N4 $C13$	117.5(2)		109.5
N1 C1 C2	117.3(2) 113.7(2)	N1 C7 N2	109.3
N1 = C1 = C2	108.8	N1 = C7 = S1	114.2(2) 124.35(18)
NI = CI = HIA	108.8	$N_{1} = C_{7} = S_{1}$	124.33(10) 121.28(17)
NI CI HID	100.0	$N_2 - C_7 - S_1$	121.30(17)
	108.8	01 - 03 - 02	124.5(2)
C2—CI—HIB	108.8	01 = 08 = 09	119.7 (2)
HIA—CI—HIB	10/./	N2-C8-C9	115.93 (19)
$C_3 = C_2 = C_1$	115.8 (3)	C14-C9-C10	119.9 (2)
C3—C2—H2A	108.3	C14—C9—C8	117.6 (2)
C1—C2—H2A	108.3	C10—C9—C8	122.3 (2)
C3—C2—H2B	108.3	C11—C10—C9	118.6 (2)
C1—C2—H2B	108.3	C11—C10—H10	120.7
H2A—C2—H2B	107.4	С9—С10—Н10	120.7
С2—С3—НЗА	109.5	C10-C11-C12	123.0 (2)
С2—С3—Н3В	109.5	C10-C11-N3	118.9 (2)
НЗА—СЗ—НЗВ	109.5	C12—C11—N3	118.1 (2)
С2—С3—Н3С	109.5	C13—C12—C11	116.6 (2)
НЗА—СЗ—НЗС	109.5	C13—C12—H12	121.7
H3B—C3—H3C	109.5	C11—C12—H12	121.7
N1—C4—C5	111.5 (2)	C12-C13-C14	122.9 (2)
N1—C4—H4A	109.3	C12—C13—N4	117.9 (2)
C5—C4—H4A	109.3	C14—C13—N4	119.2 (2)
N1—C4—H4B	109.3	C13—C14—C9	119.0 (2)
C5—C4—H4B	109.3	C13-C14-H14	120.5
H4A—C4—H4B	108.0	C9—C14—H14	120.5
C7—N1—C1—C2	-79.3 (3)	C8—C9—C10—C11	-173.6 (2)
C4—N1—C1—C2	110.2 (3)	C9—C10—C11—C12	0.2 (3)
N1—C1—C2—C3	-52.9 (4)	C9—C10—C11—N3	-179.4 (2)
C7—N1—C4—C5	-86.1 (3)	O2—N3—C11—C10	-4.2 (3)

supplementary materials

C1—N1—C4—C5	83.9 (3)	O3—N3—C11—C10	174.9 (2)
N1-C4-C5-C6	-176.4 (2)	O2—N3—C11—C12	176.2 (2)
C4—N1—C7—N2	-15.8 (3)	O3—N3—C11—C12	-4.8 (4)
C1—N1—C7—N2	174.7 (2)	C10-C11-C12-C13	-1.2 (3)
C4—N1—C7—S1	167.53 (18)	N3-C11-C12-C13	178.5 (2)
C1—N1—C7—S1	-2.0 (3)	C11—C12—C13—C14	1.2 (3)
C8—N2—C7—N1	144.3 (2)	C11—C12—C13—N4	179.3 (2)
C8—N2—C7—S1	-38.9 (3)	O5—N4—C13—C12	170.3 (2)
C7—N2—C8—O1	-16.5 (4)	O4—N4—C13—C12	-9.3 (3)
C7—N2—C8—C9	163.4 (2)	O5—N4—C13—C14	-11.5 (3)
O1—C8—C9—C14	-27.4 (3)	O4—N4—C13—C14	168.9 (2)
N2-C8-C9-C14	152.7 (2)	C12—C13—C14—C9	-0.3 (3)
O1—C8—C9—C10	147.1 (2)	N4—C13—C14—C9	-178.4 (2)
N2-C8-C9-C10	-32.8 (3)	C10—C9—C14—C13	-0.7 (3)
C14—C9—C10—C11	0.7 (3)	C8—C9—C14—C13	173.9 (2)

Hydrogen-bond geometry (Å, °)

D—H···A	<i>D</i> —Н	$H \cdots A$	$D \cdots A$	D—H··· A
N2—H2···O1 ⁱ	0.87 (1)	2.53 (2)	3.264 (3)	142 (2)
N2—H2···S1 ⁱ	0.87(1)	2.69 (2)	3.436 (2)	144 (2)
Symmetry codes: (i) x , $-y+1/2$, $z+1/2$.				

Fig. 1

Fig. 2

